

Module 1

Syllabus: Principle and Application areas of power electronics, Power semiconductor devices, Types of power electronic circuits such as controlled rectifiers, Inverters, Dc to dc choppers, AC regulators.

	• Rev	iew Questions	1-6
	1.4.7	Static Switches	1-6
	1.4.6	AC Regulators	1-5
	1.4.5	DC to DC Converter (Chopper)	1-5
	1.4.4	DC to AC Converter (Inverter)	1-4
	1.4.3	AC to DC Converter (Controlled Rectifiers)	1-4
	1.4.2	Rectifiers (Uncontrolled)	1-3
	1.4.1	Classification of Power Circuits	1-3
1.4	Power I	Electronic Circuits	1-3
1.3	Classific	cation of Power Devices	1-2
1.2	Power S	Semiconductor Devices	1-2
	1.1.2	Application Areas of Power Electronics .	1-2
	1.1.1	Principle of Power Electronics	1-2
1.1	Introdu	ction to Power Electronics	1-2

Module 1

Chapter 2: Thyristors

2-1 to 2-38

Syllabus: Basic operation of silicon controlled rectifier, Static characteristics, Two transistor analogy, Dynamic characteristics, Firing circuits (R, RC, Ramp triggering using UJT). Self study topic: Other devices of Thyristor family.

		• •	,
2.1	Introdu	uction	2-2
	2.1.1	Applications of Thyristors	2-2
	2.1.2	Silicon Controlled Rectifier (SCR)	2-2
2.2	Constru	uction of SCR	2-2
	2.2.1	Gate Cathode Layouts	2-3
2.3	I-V Cha	aracteristics (Static Characteristics) of SCR	2-3
	2.3.1	Forward characteristics	2-4
	2.3.2	Reverse characteristics	2-4
	2.3.3	Important Terms	2-4
	2.3.4	Effect of gate current	2-5
	2.3.5	How to turn off SCR ?	2-5
2.4	Operat	ion of SCR	2-5
	2.4.1	Operation without Gate Current	2-5
	2.4.2	Operation with Gate Current	2-6
2.5	Two Tr	ansistor Analogy	2-6
	2.5.1	SCR as a Switch	2-8

	2.5.2	SCR Turn ON Methods	2-8
	2.5.3	Merits of Gate Turn on	2-9
2.6	Dynami	ic Characteristics of SCR	2-9
	2.6.1	Turn-On Characteristics of SCR	2-9
	2.6.2	Turn-off Process	2-11
	2.6.3	Dynamic Turn-off Characteristics of SCR	2-11
	2.6.4	Turn-off Time (tq)	2-12
2.7		Losses in Power Devices Dissipation)	2-12
	2.7.1	Static Losses	2-13
	2.7.2	Switching Losses (Dynamic Losses)	2-13
2.8	Specific	ations/ Ratings of SCR	2-13
	2.8.1	Current Ratings	2-14
	2.8.2	Voltage Ratings	2-15
2.9	Drawba	icks of SCR	2-16
2.10	Advanta	ages of SCR	2-16
2.11	Applica	tions of SCR	2-16
2.12	SCR Typ	oes	2-17
	2.12.1	Phase Control SCRs (Converter Grade SCRs)	2-17
	2.12.2	Fast Switching SCRs (Inverter Grade SCRs)	2-17
2.13	Triggeri	ing Devices for SCRs	2-17
	2.13.1	Unijunction Transistor (UJT)	2-18
	2.13.2	Programmable Unijunction Transistor (PUT)	
2.14	SCR Ga	ate Characteristics	2-20
	2.14.1	Types of Gate Triggering	2-21
	2.14.2	Pulsed Triggering of SCR	2-22
	2.14.3	Requirements of Gate Drive for SCR .	2-22
	2.14.4	Delay Angle or Firing Angle (α)	2-23
2.15		n Circuits using Opto Coupler and Pulso	
	2.15.1	Pulse Transformers	
	2.15.2	Opto Couplers / Isolators	2-24
	2.15.3	LED-phototransistor Opto Coupler	
2.16	SCR Tric	ggering Circuits	
	2.16.1	General Block Diagram of Thyristor G Trigger Circuit	ate
	2.16.2	Simple Resistor Trigger Circuit (R Triggering Circuit)	
	2.16.3	Half Wave RC Triggering Circuit	
	2.16.4	Full Wave RC Triggering Circuit	
	2.16.5	Basic UJT Relaxation Oscillator	
	2.16.5	Basic UJT Relaxation Oscillator	2-29

	2.16.6	SCR Triggering using UJT	2-30		3.10.2	Comparison of Self and Class	
	2.16.7	Synchronized UJT Relaxation Oscillator				D Commutation	3-13
		Triggering SCR		3.11		- External Pulse Source for	2 12
	2.16.8	Comparison of Triggering Circuits		3.12		mmutation (Class F Commutation	
	2.16.9	Ramp and Pedestal Control (Ramp Triggering of UJT)		J.12		iew Questions	-
	2.16.10	Pedestal Circuit with Cosine Modified			11011	Module 1	
	24644	Ramp		Chan	tor 4 · Dr	rotection Circuits of SCR	4-1 to 4-10
		Pulse Amplifier Circuit					4-1 (0 4-10
217		Gate Protection Circuit	_	-		tection circuits of SCR.	4.0
2.17		ew Questions		4.1		ction	
	• Kevi		2-30	4.2		rent Protections Semiconductor Fuses	
		Module 1		4.3	4.2.1	r Circuit (Overcurrent / Overvolta	
Chap	ter 3 : Co	ommutation Circuits 3-1 to	o 3-14	+.3		on)	_
					4.3.1	Auto Current Limiting	4-4
_		nmutation circuits.		4.4	Supply	and Load Side Transients	
3.1		Process of SCR			4.4.1	Supply Side Transients	4-4
3.2		tation			4.4.2	Load Transients	4-5
3.3		tation Techniques		4.5	Protecti	on Against Switching Transients .	4-5
	3.3.1	Natural Commutation			4.5.1	Selenium Diodes	
	3.3.2	Forced Commutation			4.5.2	Metal Oxide Varistors (MOVs)	4-6
	3.3.3	Conditions for Successful Commutation		4.6	dv/dt ar	nd di/dt Protection	
3.4		ation of Forced Commutation Methods	3-3		4.6.1	di/dt Protection (Turn on Snubb	
	3.4.1	Comparison of Natural and Forced Commutation	2.2		4.6.2	dv/dt Protection (Turn off Snub	
	242				4.6.3	Design of a Snubber Circuit	•
	3.4.2	Comparison between Voltage Commutand Current Commutation				iew Questions	
3.5		nmutation by Resonating the Load			· Kevi	Module 2	
		Operation of the circuit	-	Chan	tor 5 : Ot	ther Power Semiconductor Dev	·iooo
	3.5.2	Drawbacks of Self Commutation		Спар	ter 5 . Ot	mer Power Semiconductor Dev	5-1 to 5-56
		Technique	3-5	Svllat	bus : Ba	asic operation and characterist	ics of power
3.6	Class B -	- Self Commutated by an LC Circuit				er BJTs, Power MOSFETs, I	
	3.6.1	Advantage		-		a (SOA) for each devices, Sill	
	3.6.2	Application				N devices, Comparison of devictor various applications, Con-	
3.7	•	mentary Voltage Commutation Commutation)	3-7	Switch	hing losse	es.	
	3.7.1	Operation of the Circuit	3-/	5.1		Semiconductor Devices	
3.8	Impulse	Commutation (Parallel Capacitance	5	5.2		Diodes	
		tation)	3-8		5.2.1	Types of Power Diodes	
	3.8.1	Operation of the Circuit	3-8		5.2.2	Operating Principle of Power Di	
3.9	Resonar	nt Pulse Commutation			5.2.3	I-V Characteristic of Power Dioc	
3.10	-	Voltage Commutation	_	5.3		ransistors	
	-	Commutation)			5.3.1	Classification of Power Transisto	
	3.10.1	Operation of the Circuit	3-12		5.3.2	Power BJT	5-4

5.4	Constru	ction of Power BJT	5-5		5.15.2	Simplified Structure of Power	
	5.4.1	Power BJT Structure	5-5			MOSFET	5-32
5.5		racteristics of the Power Transistor			5.15.3	Principle of Operation	5-33
	(Static (Characteristics)		5.16	Static C	haracteristics of Power MOSFET	5-34
	5.5.1	Operation of Power Transistor		5.17		perating Area (SOA) of a Power	F 25
	5.5.2	How is Power BJT Different from Sn		F 10		T	5-35
	F F 2	Signal BJT ?		5.18		ive Circuit Requirements of a Power T	5-36
	5.5.3	Quasi Saturation in Power Transisto			5.18.1	Gate Drive for MOSFETs	
- c	5.5.4	Hard Saturation			5.18.2	A Typical Gate Drive Circuit for Higher	
5.6		ng Characteristics of a Power BJT			0.20.2	Switching Speeds	5-37
	5.6.1	Model of Power BJT under Transien Conditions		5.19		Demerits and Applications of Power T	5-37
	5.6.2	BJT Turn on Characteristics (Dynam			5.19.1	Merits of a Power MOSFET	
	5 6 3	Characteristics)			5.19.2	Demerits of a Power MOSFET	
	5.6.3	Turn off Characteristics			5.19.3	Applications of Power MOSFETs	
	5.6.4	Charge Profile During Turn-off		5.20		ed Gate Bipolar Transistor (IGBT)	
5.7		Breakdown	5-12	3.20	5.20.1	Features of IGBT	
	5.7.1	Interdigitated Structure of Power Transistors	5_12	5.21		iction of IGBT	
5.8	Switchi	ng Limits		5.22		haracteristics of IGBT	
5.0	5.8.1	Second Breakdown		5.23		e of Operation of IGBT	
	5.8.2	Safe Operating Area (SOA)	13	5.24	•	ent Circuit of IGBT	
	5.8.3	Forward-biased Safe Operating Are		5.25	•	perating Area (SOA) of IGBT	
	5.6.5	(FBSOA)		5.26		iving Circuits	
	5.8.4	Reverse-biased Safe Operating Area				IGBT Drive Circuit Requirements	
		(RBSOA)		5.27	Protecti	on Circuits for IGBT	5-45
	5.8.5	Power Derating	5-15		5.27.1	Snubber Circuits for IGBT	5-45
	5.8.6	Breakdown Voltages	5-16	5.28	Merits a	and Demerits and Applications of IGBT	5-46
5.9	Require	ment of Base Drive Circuit of a Powe	r	5.29	Isolatio	n of Gate and Base Drives	5-47
	BJT			5.30	Compai	rison of SCR, BJT, MOSFET and IGBT	5-48
	5.9.1	Base Current Waveform	5-17	5.31	Silicon	Carbide (SiC) Devices	5-49
	5.9.2	Turn on Control	5-18		5.31.1	Silicon Carbide (SiC)	5-49
	5.9.3	Turn off Control	5-18		5.31.2	Advantages of SiC Devices	5-49
	5.9.4	Complete Base Drive Circuit for a Po			5.31.3	Important Features	
5.10	On Stat	e Losses in a Power Transistor			5.31.4	Applications	
5.11		nd dv/dt Protections (Snubber Circuits			5.31.5	SiC in Power Electronics	
5.12		ant Ratings of a Power BJT			5.31.6	SiC Schottky Diode	
	5.12.1	Thermal Runaway			5.31.7	SiC JFET	
5.13	Merits a	and Demerits and Applications of a Po			5.31.8	SIC MOSFET	5-51
					5.31.9	SiC-BJT	5-52
5.14	MOSFE	Ts	5-24	5.32	GaN Po	wer Devices	5-52
	5.14.1	Depletion Type MOSFET	5-25		5.32.1	Advantages of GaN Devices	5-52
	5.14.2	Enhancement MOSFET	5-28		5.32.2	Applications of GaN Power Devices	5-52
5.15	Power I	MOSFET	5-31		5.32.3	Why GaN ?	5-53
	5.15.1	Structure of a Power MOSFET	5-32		5.32.4	Classification of GaN Devices	5-53

	Module 3	
• Revi	ew Questions	. 5-55
5.32.11	Comparision of GaN Transistor and Si-MOSFET	5-55
	Disadvantages of GaN Devices	5-54
5.32.9	Performance Parameters of GaN Devices	5-54
5.32.8	Driver is Critical for GaN Success	5-54
5.32.7	GaN Devices Versus Silicon MOSFET	5-53
5.32.6	Advantages of GaN Over Silicon	5-53
5.32.5	High Electron Mobility Transistor (HEMT)	5-53

Chapter 6 Single Phase Controlled Rectifiers

6-1 to 6-64

Syllabus Single phase half wave rectifiers, Full wave rectifiers (mid-point and bridge configuration) for R and R-L load, Freewheel diode, Rectification and inversion mode of single phase fully controlled rectifier, Single phase dual converter, Single phase PWM rectifier, Basic working principle and applications.

6.1	Introdu	iction6-2
	6.1.1	Principle of Phase Angle Control6-2
	6.1.2	Comparison of Uncontrolled and
		Controlled Rectifiers6-3
6.2	Classifi	cation of Controlled Rectifiers6-3
	6.2.1	Two Pulse Converters6-4
6.3	Half W	ave Controlled Converter (HWCR)6-4
	6.3.1	Operation with Resistive Load6-4
	6.3.2	Analysis of HWCR with Resistive Load 6-4
	6.3.3	Operation of HWCR with Inductive
		(RL) Load6-6
	6.3.4	Effect of Freewheeling Diode6-8
	6.3.5	Drawbacks of HWCR6-9
6.4	Semico	onverter or Half Controlled Converter6-12
	6.4.1	Operation with Highly Inductive Load
		(For Symmetrical Configuration)6-12
	6.4.2	Asymmetrical Configuration Operation
		with RL Load6-15
	6.4.3	Operation with Practical RL Loads6-16
	6.4.4	Semiconverter with a Freewheeling Diode
		(RL Load)6-17
	6.4.5	Analysis of Semiconverter (Analysis of
		Output Voltage)6-19
	6.4.6	Analysis on the Input Side of
		Semiconverter6-21

	6.4.7	Performance Parameters for a	c 22
		Semiconverter	.6-23
	6.4.8	Operation with the Resistive Load (Symmetrical Configuration)	.6-27
	6.4.9	Analysis of Semiconverter with Resistive Load	
	6.4.10	Comparison between Configurations of Semiconverter	
	6.4.11	Advantages of Semiconverters	.6-31
	6.4.12	Disadvantages of Semiconverters	
	6.4.13	Application	
6.5	Full Con	verter (Full Wave Controlled Rectifier)	
	6.5.1	Midpoint Configuration (M ₂ Configuration)	
	6.5.2	Operation with Resistive Load	
	6.5.3	Operation with Highly Inductive (RL) Load	
	6.5.4	Analysis of Midpoint Configuration	
	6.5.5	Why is it called as M ₂ Configuration ?	
6.6	Full Con	verter (Bridge Converter)	
	6.6.1	Operation of Full Converter with RL Load	.6-37
	6.6.2	Analysis of Full Converter with the RL Lc (Output Side)	
	6.6.3	Two Quadrant Operation of Full Converter	.6-41
	6.6.4	Conditions for Inversion Mode	.6-43
	6.6.5	Performance Parameters for Full Converter	.6-43
	6.6.6	Fourier Analysis of Supply Current Waveform	.6-43
	6.6.7	Operation of Full Converter with Resistin	ve
	6.6.8	Analysis of Full Converter with Resistive Load	.6-49
	6.6.9	Comparison of Semiconverter and Full Converter	.6-53
	6.6.10	Use of Freewheeling Diode in Controlled Rectifiers	
	6.6.11	Advantages of Full Converter	.6-54
	6.6.12	Disadvantages of Full Converter	.6-55
	6.6.13	Application	
	6.6.14	Applications of Controlled Rectifiers	
6.7		rison of Controlled H.W.R. and Controlled	
6.8		nverters	
	6.8.1	Single Phase Dual Converter	.6-56

5

	6.8.2	Four Quadrant Operation	6-57
	6.8.3	Ideal Dual Converter	6-58
	6.8.4	Practical Dual Converters	6-59
	6.8.5	Dual Converter with Circulating Current	6-60
	6.8.6	Comparison of Circulating and Non-circulating Current Modes	6-60
6.9	Single l	Phase PWM Rectifier	6-61
	6.9.1	Advantages of PWM rectifier	6-61
	6.9.2	Applications	6-61
6.10	Univers	sity Questions and Answers	6-63
	• Rev	riew Questions	6-62
		Module 3	

Chapter 7: Three Phase Controlled Rectifiers 7-1 to 7-20

_		oplications, Calculation of output voltage.	JI (CI
7.1	Introduc	ction	.7-2
	7.1.1	Need of Polyphase Rectifiers	.7-2
	7.1.2	Advantages of Polyphase Rectifiers	.7-2
	7.1.3	3-Phase Transformers	.7-2
	7.1.4	Delta-Star Connection	.7-2
7.2	Basic Co	oncepts about the Three Phase Supply	. 7-3
7.3	How to	Draw the Phase and Line Voltages ?	. 7-3
	7.3.1	How to Draw the Phase Voltages ?	. 7-3
	7.3.2	How to Draw the Line Voltages ?	. 7-4
7.4		ation of Three Phase Controlled	. 7-4
7.5		ve Uncontrolled Rectifier	
7.6		hase Half Wave Controlled Rectifier or Three Pulse Converter	. 7-5
	7.6.1	Operation of HWCR with Purely Resistive Load	
	7.6.1.1	Continuous Conduction Mode ($\alpha \le 30^{\circ}$ or π / 6)	.7-6
	7.6.1.2	Discontinuous Conduction Mode ($\alpha > 30^{\circ}$ or $\pi / 6$)	.7-6
7.7	Three Pl	hase Full Converter (Six Pulse Converter)	.7-7
	7.7.1	Operation with a Purely Resistive Load [Full Converter]	. 7-8
	7.7.1.1	Operation in Continuous Conduction Mode $\alpha \le 60^{\circ}$.7-9
	7.7.1.2	Operation in Discontinuous Conduction Mode ($\alpha > 60^{\circ}$)	.7-9
	7.7.2	6 Pulse Converter	7-11

7.8	3 Phase Semiconverters (Half Controlled Converter)7-12
	7.8.1 3 Phase Semiconverter with Purely Resistive Load7-12
7.9	Comparison between Semiconverters and Full
	Converters7-16
7.10	Solved University Examples7-17
	Review Questions7-17
	Module 4

Chapter 8 : Single Phase Inverters

8-1 to 8-36

Syllabus: Classification based on source and Power level, Single phase bridge Inverters (VSI), Performance parameters, Voltage control of single phase inverters- PWM techniques-Single PWM, Multiple PWM, Sinusoidal PWM, Basics of Space vector modulation, Single phase current source inverters (CSI), Comparison of VSI and CSI.

8.1	Introdu	uction	8-2
8.2	Classification of Inverters8		
	8.2.1	VSI and CSI	8-2
	8.2.2	Classification Based on the Configurati	
	8.2.3	Classification Based on the Nature of Output Waveform	8-2
	8.2.4	Classification Based on Type of Commutation Circuit	8-3
	8.2.5	Classification Based on the Power Semiconductor Device Used	8-3
8.3	Transis	torised Inverters	8-3
	8.3.1	Half Bridge Voltage Source Inverter	8-3
	8.3.2	Half Bridge Inverter with Inductive Load	8-4
	8.3.3	Fourier Analysis of the Load Voltage Waveform of a Half Bridge Inverter	8-6
	8.3.4	RMS Output Voltage	8-7
	8.3.5	RMS Value of Fundamental Componer Output Voltage	
	8.3.6	Expression for Instantaneous Output Current	8-7
	8.3.7	Fundamental Output Power	8-7
8.4	Performance Parameters of Inverters8-8		
	8.4.1	Harmonic Factor of nth Harmonics HF,	n8-8
	8.4.2	Total Harmonic Distortion (THD)	8-8
	8.4.3	Distortion Factor DF	8-8
	8.4.4	Lowest Order Harmonic LOH	8-8
	8.4.5	Cross Conduction or Shoot through	
		Fault	8-9

8.5	Single Phase Full Bridge Inverter (Square Wave Output)8-		
	8.5.1	Operation with Resistive Load	8-12
	8.5.2	Single Phase Bridge Inverter with RL Load	8-14
	8.5.3	Analysis of Bridge Inverter	8-15
	8.5.4	Comparison of Half Bridge and Full Brid	_
8.6	_	Control and Harmonic Reduction in	8-18
	8.6.1	Need of Voltage Control	8-18
	8.6.2	Need of Harmonic Control	8-18
	8.6.3	Classification of Voltage Control Techniques	8-19
	8.6.4	Control of DC Voltage Supplied to an Inverter	8-19
	8.6.5	Control of Voltage Delivered by Inverter	8-20
8.7	Control of Voltage within Inverter using PWM Technique8-20		
	8.7.1	Various PWM Techniques	
	8.7.2	Single Pulse Width Modulation (SM) [Quasi Square Output]	
	8.7.3	Symmetrical Multiple Pulse Width Modulation	
	8.7.4	Multiple Pulse Modulation with Selective Elimination of Harmonics (MMSR)	
	8.7.5	Sinusoidal Pulse Width Modulation (SPWM)	8-26
	8.7.6	Comparison of SPWM and MMSR	8-28
	8.7.7	Pulse Width Modulated Half Bridge Inverter	8-28
	8.7.8	PWM Bridge Inverter	8-31
8.8	Introduc	ction to Current Source Inverters	8-32
8.9	Principle	e of Operation of CSI	8-32
	8.9.1	Advantages of CSI	8-33
	8.9.2	Drawbacks of CSI	8-33
	8.9.3	Comparison of VSI and CSI	8-34
	8.9.4	Comparison of Square Wave and PWM Inverters	
	8.9.5	Comparison of Various Methods of	
		Output Voltage Control	8-35
8.10	Applica	tions of Inverter	8-35
	• Revi	ew Questions	. 8-35

Module 4

6

Chap	oter 9 : T	hree Phase Inverter	9-1 to 9-28
Sylla mode		hree phase VSI (120° and	l 180° conduction
9.1		ıction	9-2
	9.1.1	Three Phase Bridge Inverte	er9-2
9.2	180° M	lode of Conduction	9-3
	9.2.1	180° Mode with a Star Cor Load	
	9.2.2	Cross Conduction or Shoo Fault in 180° Mode	
	9.2.3	120° Mode of Conduction Connected Resistive Load)	•
	9.2.4	Device Utilization Factor (E	DUF)9-16
	9.2.5	Comparison of 120° and 1	
9.3		Vidth Modulated (PWM) Volt	age Source
	9.3.1	Pulse Width Modulated Ha	
	9.3.2	PWM Bridge Inverter	9-21
	9.3.3	Unipolar PWM Bridge Inve	
	9.3.4	3-Phase PWM VSI	
9.4	Three F	Phase Current Source Inverte	r9-23
9.5	Harmo	nic Elimination Techniques	9-23
	9.5.1	Harmonic Reduction using Width Modulation	•
	9.5.2	Harmonic Reduction using Connections	
	9.5.3	Harmonic Reduction using Techniques	
	9.5.4	Harmonic Elimination Tech	nnique9-26
	9.5.5	Harmonic Injected Modula	ition9-26
	9.5.6	Third Harmonic PWM	9-27
	9.5.7	Space Vector Modulation ((SVM)9-27
	9.5.8	Comparison of PWM Tech	niques9-28
	• Rev	riew Questions	9-28
		Module 5	
Chap	oter 10 :	DC to DC Converter	10-1 to 10-38
Boos resis	t, Buck-E tive load	roduction, Switching mode of Boost, bidirectional dc to dc of and only CCM mode, Aption Circuits, LED lamp drive	converters, all with oplications: Power
10.1	Princip	le of Operation of Chopper .	10-2
10.2	Classifi	cation of Choppers on the Ba	asis of

10.3	Control Techniques10-3		
	10.3.1	Pulse Width Modulation (PWM) or Time Ratio Control (TRC)10-3	
	10.3.2	Constant Pulse Width Variable Frequency	
		(Frequency Modulation)10-4	
	10.3.3	Current Limit Control (CLC)10-4	
	10.3.4	Variable Pulse Width and Frequency10-4	
10.4		wn Chopper (R Load)10-4	
	10.4.1	Analysis of Step Down Chopper (Output Side)10-5	
10.5	Step Up Chopper10-7		
	10.5.1	Expression for the Output Voltage (RL Load)10-7	
	10.5.2	Step up Chopper with RLE Load10-9	
10.6	Applicat	ions of a Chopper10-10	
10.7	Switch N	Mode Power Supply (SMPS)10-10	
	10.7.1	Complete Switched Mode Regulator 10-11	
10.8	Classific	ation of SMPS10-12	
10.9	Step Do	wn or Buck Switching Regulator 10-12	
	10.9.1	Analysis of Buck Converter10-14	
	10.9.2	Advantages of Buck Regulator10-15	
	10.9.3	Disadvantages10-16	
10.10	Switchi	ng Boost Regulator (Step up Converter) 10-18	
	10.10.1	Expression for the Output Voltage (RL Load)10-19	
	10.10.2	Analysis of Boost Converter10-20	
	10.10.3	Advantages of Boost Regulator10-21	
	10.10.4	Disadvantages10-21	
10.11	Switchi	ng Buck-Boost Regulator10-22	
	10.11.1	Operation in Discontinuous Conduction	
		Mode10-23	
	10.11.2	Operation in the Continuous Conduction Mode10-23	
	10.11.3	Analysis of Buck-Boost Converter 10-24	
	10.11.4	Advantages of Buck-Boost Regulator 10-26	
	10.11.5	Disadvantages10-26	
10.12	Compa	rison of Switching Regulators10-27	
10.13	Advantages and Disadvantages of SMPS10-28		
10.14	Applications of SMPS10-28		
10.15	Power Factor Improvement Techniques10-28		
10.16		Factor of Phase Angle Controlled	
	Converters [PAC]10-29		
	10.16.1	PF of a 1 ϕ Full Converter10-29	
	10.16.2	PF of a Single Phase Semiconverter 10-29	

	10.16.3	Power Factor Improvement Techniques	10-29
10.17	Forced	Commutation for PF Improvement	10-29
	10.17.1	Extinction Angle Control (EAC)	10-29
	10.17.2	Symmetrical Angle Control (SAC)	10-32
	10.17.3	Pulse Width Modulation	
		(PWM Technique)	10-34
10.18	Compai	rison of PAC, EAC, SAC and PWM	
	Techniq	ues	10-35
10.19	LED Driver Circuit		10-36
	• Revi	ew Questions	10-37
		Module 6	

Chapter 11: Auxiliary circuits

7

11-1 to 11-16

Syllabus: Types of drivers-level shifters, Bootstrap drivers, Isolated drivers, Gate Drive circuitry for Power Converters, Methods of current and voltage measurement, Snubber

circui	ts and he	eat sinks.	
11.1	Isolated	Drives	11-2
11.2	IC Base	d Advanced Trigger Circuit	11-2
	11.2.1	IC TCA 785 to Trigger an SCR	11-4
	11.2.2	Gate Drive Circuit for Full or	
		Semi-converters	11-6
1.3	Control	Circuits for Chopper	11-7
11.4	Control Circuits for Single Phase Inverters11-		
	11.4.1	Control Circuit for Square Wave	
		Inverter	
11.5	Voltage	and Current Measurement	
	11.5.1	Current Transformer (C.T.)	11-10
	11.5.2	Potential Transformer (PT)	11-11
	11.5.3	Applications of C.T. and P.T	11-12
	11.5.4	1φ AC Voltage Measurement	11-12
	11.5.5	3φ Voltage Measurement	11-12
	11.5.6	AC Current Sensing in 1φ AC Circuits	s11-12
	11.5.7	Current Measurement in the Three F	Phase
		Circuit	11-13
11.6	Cooling	and Heat Sinks	11-13
	11.6.1	Heat Transfer Considerations	11-13
	11.6.2	Thermal Resistance of a Power	11 12
	11.60	Device	
	11.6.3	Thermal Model of a Power Device	
	11.6.4	Factors Affecting the Value of θ_{CS}	11-15
	11.6.5	Thermal Resistance of the Heat Sink θ_{SA}	11-15
	11.6.6	Heat Sink	
	• Rev	iew Questions	11-16